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Abstract. We study the metastable states in king spin models with orthogonal interaction 
"ices. We focus on three realizations of this model, the random case and two non-random 
cases. i.e. the fully-frustrated model on an infinite-dimensional hypercube and the so-called sine 
model. We use the mean-field (or TAP) equations which we derive by resumming the high- 
temperature expansion of the Gibbs free energy. In some special non-random cases, we can find 
the absolute minimum of the free energy. For the random Case we compute the average number 
of solutions to the TAP equations. We find that the configurational enmpy (or complexity) 
is extensive in the range T n s ~  c T c TM. We also present an apparently unrelated replica 
calculation which reproduces the analytical expression for the total number of TAP solutions. 

1. Introduction 

The aim of this paper is to study the mean-field equations (the TAP equations) for the local 
magnetization for the fully-frustrated Ising model on a hypercube, or equivalently on a 
single cell of a hypercubic lattice in the limit of infinite dimensions. 

The model is very interesting and has been widely studied. It belongs to the wide class 
of models which have a non-random Hamiltonian, but behave in a similar (or identical) 
way to other random models. These models can be studied using the usual techniques for 
random systems (e.g. the replica method) and in this way one can obtain the correct results 
(with maybe the exception of the equilibrium behaviour at low temperature, similar to the 
crys~talliie state of a structural glass) [l, 21. 

In this model (as in the other models of the same class) there are at least two transitions. 

The dynamical transition at which the correlation time diverges. At this temperature 
static (i.e., equal time quantities) are fully regular. 
An equilibrium transition at which the replica symmetry is broken. Below this 
temperature there are many equilibrium states available to the system. 

If we cool an infinite system below the dynamical transition, its energy does not go 
to the equilibrium energy and the system remains trapped in a metastable state of higher 
energy. 

Generally speaking one can associate to each stable or metastable state a solution of the 
TAP equation. On the contrary the inverse relation does not hold. There are many solutions 
of the TAP equations which do not correspond to stable or metastable states. According to 
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the folklore a TAP solution corrffponds to a metastable state only if it is separated from 
other solutions by a barrier whose height diverges with the volume; it seems most of the 
solutions are separated from other solutions by finite barriers. 

The relation between metastable states and the exponentially large persistency time in a 
given metastable state on one hand, and the properties of the solutions of the TAP equations, 
on the other, have never been fully understood. The aim of this paper is to contribute in 
this direction by computing some of the properties of the solutions of the TAP equation in 
a model which has metastable states. 

Another interesting property of the model (absent in its random correspondent) is the 
presence of a very low-energy state, which cannot be reached with continuity coming from 
the high-temperature phase. At a given temperature the system has a first transition to a 
state with very low energy (the crystal state). The behaviour of the system in this low- 
temperature phase may be understood with good precision by considering the corresponding 
TAP equation. 

There is also another point to which we would like to call the attention of the reader. For 
the Sherrington-Kirkpatrick (SK) model it has already been noticed that the computation of 
the total number of solutions of the TAP equations turns out to be equivalent to an apparently 
unrelated replica computation. More precisely it was found that 
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fl- l i i  z, (1) 
m-mz 

where prefactors have been neglected and only the exponentially large terms have been 
taken into account. Z, is the partition function computed by breaking the replica symmetry 
into two groups of replicas, one with m eiements, the other with n - m terms. 

The relation is quite surprising, because the right-hand side may be evaluated without 
having to write down the very TAP equation. 

Apparently there is no known explanation for this phenomenon. Our contribution to 
this point is to observe that the previous relation also holds in this case, where the form of 
the TAP equation is much more complex. It is quite likely (as also suggested by Cugliandolo 
and Kurchan) there should be an isomorphism of two algebraic structures which explains 
this equality, but we have not progressed in this direction. 

It may be interesting to recall that a similar phenomenon happens in ferromagnetic 
systems with a random temperature or magnetic field. Let us consider the case of a random 
magnetic field. Here we are interested in finding the probability of having more than one 
solution to the stochastic differential .equation 

-A#+) + m2@(x)  + g 4 ( x ) 3  = h(x)  (2) 
which plays the role of the TAP equation in this model. 

In the replica approach 13-51 it was found that the existence of many solutions is related 
to the presence of non-trivial saddle points, where the field @&) for a = 1, n (n = 0) is 
of the form 

& ( x )  = f ( x )  for 1 < a  < m 

for m < a < n  
(3) 

and one considers the limit where m + CO. 

Also in this case the replica symmetry is broken by dividing the replicas into two 
groups, one with m elements, the other with n - m terms, and taking the limit m -+ 00. 

This phenomenon seems to be quite widespread. 
The plan of the paper is as follows. 
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In section 2 we recall the definitions of three different models, which have the same 
high-temperature expansion: the random orthogonal model (ROM) where the coupling matrix 
is a random orthogonal matrix, the sine model, where the elements of the coupling matrix 
can be written as the sine of an appropriate expression, and the fully-frustrated models on 
a single hypercubic cell (FFM). These three models are identical in the high-temperature 
expansion, because they have very similar coupling matrices. 

In section 3 we use the high-temperature expansion to derive the TAP equations. 
In section 4 we study the property of ihe solution of the TAP equation corresponding to 

the lowest lying state (of zero energy) which exists in the sine model and quite likely exists 
in the fully-frustrated hypercube (the so-called crysral state). 

In section 5 we compute the average number of TiP solutions for ROM first using the 
technique of Bray and Moore [16] and then using the two-replica-group method described 
above. 

In section 6;we study their properties as a function of their free energy both at T = 0 
and T # 0. We also find a relation among the properties of the TAP equations and the 
marginality condition for the dynamical transition and show that, above the RSB transition, 
the replica symmetric free energy can be witten as the sum of contributions from a large 
number of metastable states. 

Finally, in section seven, we present a few concluding remarks and in the two 
appendices, some technical details needed in the computations of section 5. . 

2. The model 

In what follows we will consider the model defined by the Hamiltonian 

(4) H = -i J..u.a. 
2 U ' J  

ij 

where {U,] is a set of N king spin variables (U; = +l) and Jjj  is an N x N symmetric 
orthogonal matrix with large connectivity (z >> 1). To lighten the notation, the matrix Jij 

will be taken to have zeros on the diagonalt. 

2.1. Random orthogonal model 

In the random orthogonal model (ROM) the coupling matrix is chosen at random in the set 
of orthogonal symmetric matrices. The probability distribution (or integration measure) is 
defined by writing J = ODO-' with D a diagonal matrix composed of fl and 0 a generic 
orthogonal matrix (not necessarily symmetric) whose probability distribution is defined by 
the Haar measure on the orthogonal group. We will make use of the identity [6] 

/ DJexp {TI:} = exp [ NTrG (a)} (5 ) 

which holds in the large-N limit when A is a symmetric matrix of finite rank and where 
G ( x )  is given by 

Notice that integration over matrices chosen from a Gaussian distribution (SK model) also 
yields (5) but with G(x) = x2/4. 
7 Strictly speaking a generic matrix J in the ROM and the one for the sine model have non-zem diagonal elements, 
nevertheless the matrix obtained by setting those elements to zero will also be onhogonal in the largt-N limit. 
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2.2. Sine model 

The coupling matrix for the sine model is given by 
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J -  2 sin (-) 2xij 
" - , l Z F T  2 N f l  (7) 

The matrix J is obviously symmetric and its orthogonality follows from orihonormality 
relations among simple harmonics. This model was introduced in [6] as a simple 
Hamiltonian that admits a complex ground state for special values of N. More precisely, 
if 2N + 1 is prime and N is odd then the Legendre sequence 

oj = jN (mod 2N + 1) (8) 
which consists of f l  is a ground-state configuration of the sine model with energy density 
-4. This fact is by no means obvious; the interested reader is referred to [6] for details. 

Monte Carlo simulations have shown that the thermodynamical properties of the sine 
model are the same as those of ROM. The only difference is that for the sine model with 
2N + 1 prime there exists a low-lying statenever seen for large N when cooling from 
high temperature-in which the system remains (at low temperature) if it is put there by 
hand. One explanation of the similarity between the sine model and ROM is that (7) can be 
viewed as a (bad) pseudo-random generator, and therefore the couplings are, for all practical 
purpose, random. 

2.3. Fully-frustrated model 

Frustration in an Ising-like system (with Jjj = f l )  is defined by the product of the couplings 
over a given plaquette [7]. If this product is -1 the plaquette is said to be frustrated. One can 
construct a coupling matrix on a d-dimensional simple cubic lattice such that every plaquette 
is frustrated. This construction is not unique but all realizations are gauge equivalent so 
the thermodynamical properties of the model are unique. For a single hypercubic cell, the 
fully-frustrated condition imposes [SI 

Therefore if we divide the couplings by the matrix J will be orthogonal and symmetric. 
The thermodynamical limit will be taken by letting d go to infinity, which will also ensure 
that the coordination number is large. 

Note that unlike SK on a cubic lattice, for the fully-frustrated model (m) the d -+ m 
l i t  of a single hypercube is not completely equivalent to that of the lattice. The reason 
is that for SK the distribution of the eigenvalues of the coupling matrix (the celebrated 
Wigner semi-circle law) is the same both on the single cell and on the lattice. In the fully- 
frustrated case, the matrix J has only two eigenvalues (-I, 1) for the unit hypercube, while 
it has a continuous distribution for the lattice, in the range [ -2 ,2 ]  with RMS value & [9]. 
Heuristically, in the high-T phase the system is sensitive to all eigenvalues of the matrix: as 
we shall see, both models (lattice and unit cell) have the same free energy up to a rescaling 
of p by a factor of A. On the other hand, in the low-T phase, it is the largest eigenvalues 
of J that matter: for example, the ground state of the lattice has twice the energy density of 
that of the unit cell. It is this difference between 2 and & that makes it impossible to go 
from a single cell to the lattice with a simple rescaling of the temperature: their qualitative 
behaviour should nevertheless be the same. 

The ground-state configuration of f l  is not known for d > 8: It is conjectured that, 
with the normalization, the ground-state energy density goes to -$ for large d and 
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that it is equal to -; when d is a perfect square. As with the sine model, Monte Carlo 
simulations of FFM are well described by ROM; furthermore, they show ageing effects, which 
strengthens our belief that FFM is a glassy system [lo]. 

3. Mean-field free energy 

3.1. Standard high-temperature expansion 

Our goal is to derive the TAP equations for the orthogonal model using the high-temperature 
expansion of the magnetization-dependent (Gibbs) free energy. Before doing so, let us try 
to understand the standard (mi = 0) high-temperature expansion. We can write 

where we have introduced a site-dependent magnetic field h< for later convenience; in this 
section we set it to zero. We can view this partition function as a theory of N fields in zero 
dimension. In this language the high-temperature free energy F ( 8 )  is the sum of connected 
diagrams whose vertex factors are the coefficients of the Taylor series for logcoshx, with 
the propagator p J i j .  The first few terms are . 

where J<< = 0 excludes ‘petals’-terms involving Ai. The only terms that survive the 
large4 limit are the so-called ‘cactus’ diagrams-trees made out of loops joined at the 
vertices (see figure 1). The sum of Jjj’s for cactus diagrams is equal to N if the lengths of 
all loops are even (even-cacti) and zero otherwise. To show this, we take a cactus diagram 
and contract each loop to a point starting from the outermost loops, the coneaction is done 
using the orthogonality relation 

( a )  ( b )  (C) ( d )  

Figure 1. (a)  A diagram with a petal, (b)  and (c) two non-cactus diagrams, (d) a generic 
even-cactus diagram. 



5272 G Parisi and M Potters 

In other words, the high-temperature free energy is given by N times the sum over the 
combinatorial factors and powers of f i  of all even-cactus diagrams. In particular, this free 
energy is independent of the particular choice of the orthogonal matrix J. 

There is more than one way to calculate this sum. Since it is independent of the matrix 
J it must be equal to the (annealed) average over such matrices, recovering the result of [6] 

-@F(@) = NlogZ+NG(f i )  (13) 
with G(x) given by (6). 

More directly, we notice that the tiesired diagrams are precisely those summed by the 
high-temperature series of the spherical model. In the spherical model the king variables 
q are replaced by continuous variables Si constrained to have xi S;” = N .  Fixing this last 
constraint with a Lagrange multiplier, the sum over all configurations is then a Gaussian 
integral which can be done exactly knowing the eigenvalues of the matrix J, i.e. 1 and - 1  
in equal proportions. After eliminating the Lagrange multiplier, we find 

(14) 
N 

-BFsph(B) = ~ ( l O g 2 X  + 1) + N G W  

with the same G(x). The first terms in (13) and (14) are the volume of phase space of the 
two respective models. A similar analysis was done in [9] for FFM on the full lattice. They 
also found (13) but with G(@) replaced with C( -h f i ) .  

For comparison, the high-temperature series for SK is easily done; the only surviving 
diagram is the first one in (11) leaving us with 

(15) 
fl2 - @ F s ~ ( f i )  = N b g 2 +  N -  
4 

where we have used that 

3.2. Gibbs free energy 

The high-T free energy we have just calculated does not tell us anything about the low- 
temperature phase. It does not have any singularity for positive @ which might signal 
a phase transition. What we need to compute is the magnetization-dependent free energy 
(often called the Gibbs free energy). In SK this quantity is exactly the TAP free energy which 
is still valid in the low-temperature phase. The program is simple, we need to expand (10) 
in powers of @ and hi and perform a Legendre transform, passing from the variables hi to 
mi using 

J$ is self-averaging. 

Calculating the first few terms in @ by hand, we find 

-@W& mi)  = -4 ((1 + m i )  log [ ; ( I  + m i ) ]  + ( 1  - mi) log [;(I - m i ) ] ]  

The first term is the entropy of king spins constrained to have magnetization ( m i } ,  the second 
one is minus the ‘naive’ mean-field energy, and the thud corresponds to the Onsager reaction 
term. In [ l l ]  the TAP equations for SK were re-derived in this way, the higher-order terms 
being negligible in that case. The analysis of the previous section (mi = 0) tells us that 
for a model with an orthogonal matrix, the high-temperature series will include an infinite 
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number of non-negligible terms. We must therefore find a systematic way of calculating all 
the terms in the Gibbs free energy. 

In standard field theory, the Legendre transform can be formulated in diagrammatical 
terms. The Gibbs free energy, also called the effective potential in particle physics, is given 
by the sum over connected one-particle-irreducible diagrams. This is not true in our case. 
The reason is that the external field hi does not appear as a linear source term in (lo), 
instead it appears inside the potential. A shift in & would not simplify matters since it 
would introduce a term quadratic in hi sufficient to render invalid the usual IPI derivation. 
The present authors do not know of any diagrammatic expansion of the Gibbs free energy 
for the Ising-like system. 

It is, however, possible to perform such an expansion algebraically and to give it a 
diagrammatic interpretation [12]. The weak point of this method is that the vertex weight 
and the combinatorial factors cannot be calculated systematically. Nevertheless, one can 
see that the cactus diagramst, will appear in the Gibbs free energy with the same weight 
but with an extra factor of (1 - m i )  for each vertex ik [13]. Therefore we have 

We now argue that in the large-N limit, all those terms (except for the 'entropic' 
and 'energetic' one) are self-averaging, that is, the error introduced by substituting mi by 
q N-' xi m! vanishes in the thermodynamical h i t .  Equivalently in SK the Onsager 
term in the free energy is often replaced by Bz(l - q)2/4. We can now resum (18), by 
noticing that we are now summing over the same diagrams as in the m = 0 case. We 
recover the reaction term of (13) with p replaced by B(1 - q), 

B* = [(I + m i ) l o g [ ; ( ~  +mi)] + (1 - mi)log [;(I -mi)] )  

(19) 
. 1 -?BE Jijmimj - NG(B(1- 4)) 

i j  

where the function G(x) is again given by (6). 
The same result can be obtained in a more heuristic way. We saw in the previous 

section that the spherical model reproduces the high-temperature expansion of the model 
with king spins except for the entropic term. It is quite plausible that the two models will 
have the same Gibbs free energy, except once again for the entropic term. This argument 
has been used (the other way around) to deduced the right TAP equations for the spherical 
p-spin model [14]. The general Gibbs free energy for a spherical model with quadratic 
interaction is given by 

(20) BaSph = logdet'/2(h - BJ) - iN(log2n +A) + f Emi(h8;j  - BJij)mj 
i j  

t What we call cactus diagrams are called~ 'loop diagrams' in [12]. The difference in terminology adses from 
the fact that these authors consider restricted sums (sums over different indices with combinatorid factors) while 
we consider unrestricted sums. The vertex weights coming from the expansion of logcoshx are precisely those 
necessary to go from one type of sum to the other. 
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with A determined by the saddle-point equation. 
eigenvalues of J are (+l, -1) in equal proportions and after eliminating A we find 

Specializing to the case where the 

p@$ph = -~N(log[2rr(l- q)] + 1) - Jijmimj - NG(B(1- q))  (21) 

with q = N-' xi m:. The first term is the entropy of spherical spins constrained to have 
magnetization mi.  As expected, it is the only term that differs from (19). Note that in this 
case we did not need to substitute 1 - m: with its average value (1 - q). 

Armed with the free energy (19), we can now write down the 'mean-field' or TAP 
equations for our model. They are given by the partial derivatives of 0 with respect to the 
mi's: 

(22) 

Finally, we note that if we substitute in (19) and (22) G(x) = x2/4 we recover the 
standard result of [15] for SK just as the same substitution in our integration formula (5) 
recovers the integration over a Gaussian distribution. In section 5, this fact will provide us 
with an easy way to compare our formulae against those of 1161. 

4. Minimum of the free energy 

The orthogonality of J imposes a simple bound on the energy of any spin configuration. 
Indeed, a configuration vector {ui) can be decomposed into its projection [s:} on the 
eigenspace with eigenvalue +I  and (sJ on the complement with eigenvalue -1. Then we 
have 

i j  

tanh-' m; + 2,8G'(,9(1- q))mi - j3 Jijmj = 0 .  
j 

In other words, the energy is bounded below by -N/2 and this bound is reached iff U 
is an eigenvector of J with eigenvalue +l. Later we shall argue that for a generic large 
orthogonal matrix the existence of an eigenvector whose every component is either +l or 
-1 is highly improbable. Nevertheless, we can construct such a matrix, for example the 
sine model for odd N with 2N + 1 a prime number. Whether or not FFM admits such a 
ground state for special values of d and/or in the limit d -+ 00 is still an open question. 
Unfortunately, neither an e = -f sp! configuration for d > 9 has been found nor has a 
proof that it cannot exist. 

For the remaining part of this section, we will consider a model that admits an e = -f 
ground state. The TAP equations (22) admit in this case a solution of the form 

mi = f i c i  (24) 
where the ( ~ i ]  are i l  and form an eigenvector of J with eigenvalue +l. With this ansatz 
(22) reduces to 

where we have used (6) to compute G'(x). This solution has specific freeenergy given by 

-@log[$(l - 431 - 2q B - G(B(1-4 ) ) .  (26) B f  = - 2 
For a given value of q,  this is the lowest free energy solution. In fact, the energetic term 
reaches its lower bound from orthogonality, the entropy is maximum (at fixed q)  when all 
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the local magnetizations are equal in magnitude and the reaction term only depends on q .  
The absolute minimum of the free energy must therefore be of this form. Equation (25) 
always admits a solution with q = 0. At low temperature it will also admit a solution with 
non-zero q .  Numerically one finds that below T, = 0.400t a solution with q = 0.92 appears 
but with higher free energy than the paramagnetic solution. At T, = 0.178 (q = 0,99995) 
this solution becomes the true minimum of the free energy. 

One might conclude as in 1131, that the system undergoes a first-order transition at 
Ter. This transition is not seen in Monte Carlo simulations of FFM or the sine model when 
cooling down from high temperature. Besides equation (24). there are many other solutions 
to the mean-field equations. As we shall see in the next section, for a generic interaction 
matrix and below a certain critical temperature, their number grows exponentially with the 
size of the system. It is those solutions and the large free-energy barriers between them that 
prevent the system from finding the true minimum of the free energy and gives it instead a 
glassy behaviour. 

when the ground-state configuration is known-as in the sine model for special N-it 
is, however, possible to~see this ‘crystalline state’ in Monte Carlo simulations. One has to 
start in the ground state at T = 0 and continuously increase the temperature. Figure 10 
of 161 shows the result of such a simulation (sine model N = 44 and 806). Calculation 
of the intemal energy for our solution reproduces those curves exactly. Note that for the 
larger value of N the system stays trapped beyond the point where the paramagnetic solution 
becomes stable (Tcr = 0.712 on their scale), this is a clear sign that barriers between different 
metastable states are very high. 

The solution (24) can be transposed directly to the FFM on the lattice by taking care 
of the appropriate factors of 2 and recovering the result of [13] .  One important point, 
though, is that this solution is only valid if the ground-state energy density is -4 ( - 1  for 
the full lattice), otherwise {c i ]  is not an eigenvector of J and (22) does not reduce to (25). 

5. Number of TAP solutions 

5.1. General result 

In this section we will compute the average number of metastable states for ROM. We will 
follow as much as possible the steps and the notation of [I61 where the corresponding result 
for SK was first derived. Recall our TAP equations: 

r i  tanh-’ mi + ZpG’(p(1 -q))mi - ,9 Jijmj = 0 
i l .  7-1 

= g(mi)  - B J i j n j  = o (27) 
i f j  

with corresponding free energy written as a sum of single-site terms: 

~ f = (pN) - ’  [-log2 - G ( p ( 1 -  4 ) )  - pqG‘(,9(1- q))  + $mi tanh-’ mi 
i 

+f log(1 - m 3 ]  . (28) 

We write the number of solutions as the integral over all possible values of mi fixing with 
&functions that the {mi) form a solution of (27) with free energy f. Using a Fourier 

t This paper contains many numbers obtained from numerical analysis, they are noted with equal signs and every 
digit is significant. 
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representation of the 8-function, we obtain 

- A x m :  + u x  f ( m i )  + c x i g ( m i )  - 8 1  J i j  (ximj +ximi)  ldet AI 

(29) 

i icj 1 
where 

ari 
Ai) = 6 = [(l -$I-’ + ZBG’(p(1 - q))] 8, - B J i j  

=a.8.. - I ‘I -BJ . .  ‘I (30) 
dropping a term in m{mj/N (see appendix A). 

We can now proceed to average (29) over the random couplings J i j .  We should really 
be averaging IogN,, the extensive quantity. not N,. To do so we would need to introduce 
replicas. The replica-symmetric computation would be tedious but straightforward leaving 
us not with seven unknown parameters (as will be the case below) but of the order of 14. 
On the other hand, the direct average will be sufficient to provide us with a clear picture of 
the metastable states. 

There are two terms that depend on the { J i j } .  It is shown in appendix A that the two 
can be averaged independently. Using equation (5) to average the term involving xi and 
mi, we find 

The second equality in (31) follows from an analysis of the eigenvalues of the mahix 
x @ m + m @ X. This matrix has only two non-zero eigenvalues~corresponding to the two 
terms: U + f i  and U -~fi. 

To compute the average of the determinant we will need to drop the absolute value. 
This corresponds to weighting each solution with the sign of the determinant of its Hessian 
matrix. Formally, we would be computing a topological invariant (from Morse theory) 
which has little to do with ow original goal. Nevertheless, the calculation without the 
absolute value gives sensible results (here and in [16, 171) and connects smoothly with the 
zero temperature results where the calculation can be done without this pathology. This 
problem is discussed in more detail in [IS, 191. 

We introduce a set of anti-commuting (Grassman) variables {&,e,) to express the 
determinant as an exponential, 
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If we expand T r G [ - .  .] in a Taylor series, we can use the following property of Grassman 
variables: 

which allows us to resum the series and find 

(detA) = SdOdeexp [ - 2NG (35) 
i 

Finally we fix r = ( p / N )  x j  &Ji using aLagrange multiplier R, which allows us to perform 
the integration over the Grassman variables, leaving us with 

(detA) =/-dr/ im - - ( u i + B R ) e x p { N [ - r R - Z G ( r ) ] } .  dR (36) -- -im 2xi 

We now collect results from (29), (31) and (36), introduce Lagrange multipliers V and W 
to impose (32), perform the xi inteption, drop multiplicative prefactors and finally set 
V = ZG’(B(1- q))  - A ,  R = B/j3 - ZG’(B(1 - q) )  and r = pb, to obtain 

(J%(f)) = E x t e x p ( N [ - h q - u f - b B - u A - w W / q + G ( u + J F ) ~  

where 

. .  

+G(u - &) - 2 G W )  + 2(Bb - u)G’(B(l - 4)) + log I ] }  (37) 

+ h m * + u f ( m )  . (38) 1 2 (tanh-’ m - OAm) + B> exp [ - 4 p  w 
We have indicated by Ext that the right-hand side of (37) is to be extremized with respect 
to the nine variables: A, 4, U, b, B, U, A ,  w and W. By partial differentiation with respect 
to those variables, we obtain the saddle-point equations. They admit a solution with B = 0 
which implies b = 1 - q;  following [I61 we adopt this solution. This choice will also lead 
us to the correct T = 0 result. 

As mentioned earlier, the result for SK can be obtained from (37) by setting G(x) = xz/4. 
In this case, three variables can be eliminated using the saddle-point equations to give the 
same expression as in [16]. 

5.2. Two-group method 

In this section we will divert slightly from our analysis of the thermodynamics of the 
orthogonal model to look at a puzzling analytical ‘coincidence.’ Indeed, the expression for 
the average number of TAP solutions can be obtained by computing the partition function for 
a certain replica-symmetry breaking scheme. The ‘two-group model‘ was first introduced 
in [20] as an attempt to break replica symmetry in SK. It was later noticed [21] that the 
partition function (limn40(Z;G),) in this framework is not equal to unity but instead one 
has 

(Z&) = 1 dfCN,( fWnBNf (39) 

and in particular lim.,O(Z;L,)I gives the average number of TAP solutions ((N*)J). 

with n replicas, 
Here we sketch the similar result for ROM. We compute the average partition function 

(Z”), = / d Q d h  exp(N[TrG(BQ)-~Tr(Ae)flogZ~(A)]} (40) 
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with 
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Using a replica-symmetry breaking ansatz such that the matrices A and Q are made up of 
two diagonal blocks of size m x m and (n - m) x (n - m) and have equal elements outside 
those blocks, 

m n-m m n-m 
AA 

with A.. = 0 and Q., = 1. We then let the block size m go to infinity, while fixing the 
relations between the variables U, U] and u2 and g, q1 and q2 in order to ensure a finite limit 
for the partition function. We find that (39) is satisfied. The details of the derivation are in 
appendix B. Since the derivation is independent of the explicit form of the function G(x), 
the result should be valid for any model whose coupling matrix is chosen from a distribution 
that obeys a relation such as (5). We recover the result for SK in the case G(x) = x2/4. 

It is still unclear to us exactly why the two-group partition function should count the 
number of metastable states. The fact that this 'coincidence' extends beyond the SK model 
reinforces our conviction that there exists a yet-to-be-discovered formal connection between 
the two computations. 

6. Analysis 

6.1. T = 0 result 

We now come back to the analysis of (37) and its solutions. Let us start by studying its 
T = 0 limit. In this limit, q + 1, A decouples, and the five other parameters have a 
finite value. The integral in (38) can then be done analytically using a change of variable 
m = 1 - exp(-gy) and keeping only terms with a finite limit when g + CO, 

lim I = exp(u2W/4 - Au/2)  erfc 
6-r m 

(43) 

Shifting A and doing the integral over U, we obtain 

(x(f)) =Ext exp(N [ -uA - wW + (f + UW + A/Z)'/W + G ( u + f i )  

+G(u - f i) + logerfc(-A/2&@]] . (44) 

The same result can be obtained directly by counting the average number of spin 
configurations {ut] satisfying 

Vi uj Jijuj =- 0 and f = - Jjjojuj (45) 
j#i icj 

This computation can be done in rather a straightforward way using Heaviside step functions 
instead of &functions. This approach is free of the problem of the absolute value of the 
determinant. 

The saddle-point equations obtained from (44) were solved numerically to give the 
shape of the distribution of one-flip stable configurations as a function of energy density 
(figure 2, full curve). Note that since (44) involves the function G(x)  for potentially complex 
arguments (the complex conjugate term assures us that the final result will always he real) 
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Figure 2. Logarithm of the den- 
sity of metastable states divided by 
N as a function of h e  energy 
(N-'log("f)) versus f )  at T = 
0 (full curve); T = 0.134 @roken 
curve) and T = 0.065 (do& curve); 
Simulation at T = 0 for N = 48 ROM 
(data points). 

one has to choose a sign convention for the square-root terms in the definition of G(x)  (cf 
equation (6)). It was chosen such that the real part of the squareroot is always of the same 
sign as U in G(u+.JE); this way the saddle point never has to cross any cut in the complex 
plane. 

As one follows the saddle point to the rightmost part of the c w e  (e > -0.36). the 
argument of the error function in equation (44) goes through infinity after which all four 
parameters become complex. It is not clear if the contour of the integral computed by 
the saddle-point method can be deformed to have this complex saddle point as its main 
conhibution. This issue was not investigated any further for it is of marginal interest. 

In addition, an approximate enumeration of the one-flip stable configurations for a 
relatively small (N = 48) ROM was done. Random configurations were generated and 
then cooled at zero temperature, the resulting one-flip stable configurations were compared 
with previously stored ones and were stored if not previously obtained. After 4 x 106 
iterations, the low-energy configurations were each found about a hundred times while only 
a few high-energy ones remained unfound. The resulting dishibution was binned and its 
logarithm (divided by 48) is shown as the data points on figure 2. An overall normalization 
constant (not predicted by the saddle-point method) was added to the simulation data to make 
them fall on the predicted curve. Points on the x-axis correspond to energy bins where no 
metastable states were found. The agreement between the theory and this simulation is very 
good. Similar data (not shown) for the sine model also gave very good agreement with the 
ROM prediction. For FFM the Diophantine constraints (integer spin and integer field) are 
such that for small d only a few values of the energy are allowed for a metastable state (e.g. 
2 fo rd  = 5 and 3 ford = 6). Those constraints might not be so important for large d ,  but 
for d 2 6 ( N  > 64) an exhaustive search becomes impossible. Whether the distribution of 
metastable states in FFM follows that of ROM remains an open question. 

The point where the c w e  shown in figure 3 intersects the x-axis on the left, 
corresponds to the minimum energy (Ensol) at which there are on average exponentially 
many configurations. It is almost equal to the approximate ground-state energy (El.step) 
from the one-step replica breaking solution of this model [6]. Careful analysis of the 
equations leading to these two quantities done using arbitrary precision arithmetic shows 
that while they are not equal they differ by less than 30 parts in a billion. Precisely, 
En,\ = -0.484 119415 and Ek.step = -0.484 119428. The true average ground-state 
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0.3 , 

Figure 3. Normalized logarithm 
of the average total number of TAP 

temperamre (N-' IogLni,) versus 
T) (full curve); same curve but for 

o,l o,15 o.2 o3 035 solutions that contribute IO the free 
T energy (broken curve). 

Solutions for ROM aS a function O f  

energy density for ROM is probably well approximated by either of these two quantities, 

6.2. Finite T results 

By taking partial derivatives of (37). we can write the number of metastable states in terms 
of the solution of six coupled non-linear equations, three of which contain definite integrals. 
A numerical solution of these equations was done by following the T = 0 solution of the 
previous section to finite T .  At fixed T, varying U traces out the N-' log(Ns) versus f 
curve. Typical curves (for T,= 0.134 and T = 0.065) are shown in figure 2 (broken and 
dotted curves); results for other temperatures are quite similar. The abrupt stop on the 
right-hand side of these CUNW is due to the divergence of the definite integral in (37), it 
is possible that the saddle point can be analytically continued to complex values giving a 
smooth curve all the way to zero as in the T = 0 case. This issue has not been investigated 
since the interesting points lie on the low free energy end of the curve. 

Setting U = 0 in (37) gives the total number Of TAP solutions. It gives a positive 
value for N-' log(N,) starting from 0.2854 at T = 0 and decreasing all the way to 0 at 
Tnso] = 0.32. Above this temperature, the q = 0 saddle point with log(N;) = 0 is the 
correct one. The full results are plotted in figure 3 (full curve). 

In the thermodynamics of the model nothiig special happens at the temperature Tom] = 
at which exponentially many TAP solutions appear. These metastable states have too high 
free energy to contribute to the partition function. Instead, if we write 

(46) e-pF =E.-"" /df(&(f)}e-Nbf x maxe NMf) 

01 f 

we find that the solutions which contributes to the free energy are those for which A(f)  
is maximum. They are given by setting U = -j3 in (37). With this substitution, the 
saddle-point equations admit a simple solution of the form: 

PA A=-. A 
A G'@) - G'(B(1- q)) w = s  4 

B24* w = -  *=j3-- 84 
2 4 
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In the language of the two-group model, this solution corresponds to an unbroken two-group 
(i.e. a = y = t = r = 0, see appendix B). The number of contributing TAP solutions reduces 
to 

(A& = expW (Bf + G(B) +log2)) (49) 

where 
.~ 

with A(q)  as above and q determined variationally. The function f corresponds to the 
free energy of the contributing solutions. We notice that the logarithm of the number of 
contributing solutions, often called complexiry, can be written as 

where F I . ~ ~ ~ ~  i s  the free energy computed with one-step replica symmetry breaking with 
RSB parameter m, qo = 0 and extremized over qt = q (equation (44) in 161). Equality (51) 
is in fact more general than what is presented in here, for a more direct derivation and its 
physical interpretation see [22]. 

The condition for (49) to have a saddle point at a non-zero value of q is equivalent to 
the marginality condition (T c T, = 0.134). At this temperature, one finds q =~0.962 with 
N-' log(N,) = 0.158. Monte Carlo simulations have indicated that all three orthogonal 
models considered here (FFM, ROM and the sine model) undergo a dynamical glassy transition 
at a temperature equal or very near TM [6, 101. 

The complexity goes to zero at the replica symmetry breaking transition TRSB = 0.065. 
For temperatures below T ~ B ,  equation (49) gives an unphysical negative complexity: the 
above saddle point is no longer valid and the contributing solutions are those with the 
smallest free energy (the leftmost points of the curves of figure 2). The full curve of 
complexity versus temperature is plotted in figure 3 (broken curve). 

We finally notice that we naturally have 

maxA(f) = log2 + G(B) = - B ~ R s .  (52) 
f 

In other words even in the region between TRSB and TM, where a large number of solutions 
contribute to the free energy, the replica symmetric (RS) free energy is still valid. The 
decomposition of the RS free energy into contributions from many metastable states below 
a temperature 'Tg' higher than TRSB has been discussed in the context of many different 
models [23-261. 

Above TM, one can still find a saddle point of (37) with U = -B, corresponding to the 
maximum of A(f) ,  but it is no longer of the simple form of (48): the two-group symmetry 
is broken. Numerically one finds that for those temperatures, max A(f) c - B f R S .  The TAP 
solutions do not contribute to the free energy. 

It may seem surprising that the RS solution is still valid while a very large number of 
different states contribute to the free energy. The explanation is that their number is so 
large that if one chooses randomly two such states the probability of finding the same one 
is zero, therefore the order parameter P ( q )  only measures the overlap between different 
states which is always equal to qo = 0. Only when the complexity ceases to be extensive 
can the P ( q )  become non-trivial, leading to replica symmetry breaking. 
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I. Conclusion 

We now have a simple intuitive scenario for the phase diagram of models such as ROM where 
the order parameter jumps discontinuously at the transition (see table 1). At a relatively 
high temperature T,,] the number of metastable states increases dramatically, but their 
free energy is so high that they influence neither the statics nor the dynamics. At TM, a 
large number of these states start contributing to the free energy. At this temperature, all 
static thermodynamical quantities are perfectly regular, but the time scales involved with 
the dynamics diverge and the system is no longer able to thermalize. Phenomena such as 
ageing start to appear. At TRSB the entropy of the contributing states goes to zero, P ( q )  
becomes non-trivial and replica symmetry is broken. 

We have also seen that the number of TAP solutions can be computed using the two- 
group method and that in the temperature range T ~ B  < T < TM the solutions that contribute 
to the free energy correspond to an unbroken two-group, recovering the results of [22]. 
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Table 1. Interesting temperatures for the orthogonal model, from text and adapted from [6] to 
the present normalizations. 

Symbol Temp. Comments 

T, 0.40 Metastable uystalline phase (if present) 
T,,,] 0.32 Exponentid number of TAP solutions 
TCl. 0.18 Stability of crystafline solution (if present) 
TM TAP solutions start wnbibuting to the free energy. ‘marginality 

condition’ and dynamical phase transition 
Tnss 0.065 ~ Complexity goes to zero and replica-symmetry breaking 

0.134 
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Appendix A. Separation of averages 

We will now proceed to show that the determinant of the matrix A and the term - Jjjximj 
(cf equation (29)) can be averaged separately. Had we kept them together, introduced 
Grassman variables and integrated over the couplings, we would have obtained a term like 
this 

Therefore we need to show that the cross-terms in the Taylor expansion of TrG[. . .] are 
irrelevant in the large N limit. A typical cross-term is 

- . . e, e,, . 

We can consider these terms as a perturbation about the fermionic Gaussian integral (35). 
We need to compute all connected diagrams generated by these new 9 and # vertices, 
contracting them with the Gaussian propagator (ai + ,9R)-’G;j. The point is that since the 
propagator is diagonal, all such contractions will be at most of order 1 while the logarithm 
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of the unperturbed result (equation (36)) is of order N. The same is true of the term we 
dropped in writing (30). 

Appendix B. Two-group partition function 

In this appendix, we will compute the two-group partition function for ROM and recover, as 
mentioned in section 5.2, the average number of TAP solutions. We specialize right away to 
the case n = 0 which will make some of our formulae look a bit strange but will make the 
notation more compact. The following derivation can be extended without much difficulty 
to the n # 0 case. We parametrize the matrix elements of A and Q as 

(BU 
(B2) 

which will ensure a finite limit when m goes to infinity. We now compute the different 
parts of (40); 

Tr(AQ) = 2(at + q r  + yu )  - 2(au + q t )  . (B3) 

U, = U + t/m + rim2 

91 = q  + a / m  + y / m 2  

u2 = U - t/m + r/m2 

q2 = q  - a h  + Y / m  2 

To compute TrG(pQ) we find the different eigenvalues of the matr ix~Q and their 
multiplicity, leading us to 

T W B Q )  = lim (m - 1 ) G W  -41)) - fm + 1)G(B(1 - q 2 ) )  + G(Bqf )  + G(Bq-) 
m-cc 

= - 2 G W  - 4 ) )  - 2@3'(B(1- 4 ) )  + G(Bqf) + G(Bq-) (B4) 
where 

q* = q  - L Y  - 1 k d m .  (W 
The Zo(A) term requires more work, 

where 

S=cu. S + = ~ o .  and S-=cu.. (B7) 

If we make three Hubbard-Srratonovich transformations to linearize the quadratic terms and 
do the sum over spins, we find 

o<m Ll>m 

+m logcosh(h + h+) - logcosh(h + h-) - - + - (38) [ 2t h'll 2t 
where we have put in evidence the terms with a factor of m. We can now use the saddle- 
point method to compute the m + 00 limit of the last expression. To leading order in m ,  
the saddle-point equations for h+ and h- are the same. They do differ by a term of order 
l l m  but this perturbation only contributes to the.saddle point at order l / m  (it does not 
contribute at order one because the derivative of the order m term vanishes). At the saddle 
point, one has h+ = h- = ho which solves 

(B9) 
ho 

E(h, ho) tmh(h + ho) - - = 0. 
t 
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The order m contributions to the saddle point of h+ and h- exactly cancel each other leaving 
us with a finite result as m + CO. Including Gaussian fluctuations, we find 
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Using the implicit function theorem, 

we can change the integration variable from h to ho which we rescalet to find 

Finally if we collect the results from (B3), (B4) and (BlZ), make the following change 
of variables: 

A = r / p  w = u/2pZ A = r~ w = p z [ ~ ( y  -U)] U = p ( ~  + 1 - q), 

and extremize over the six parameters, we recover (N,) given by (37) with U = 0 where 
the saddle point with B = 0 and b = 1 - q has been chosen. Had we not set n = 0, we 
would have recovered the right-hand side of (37) with U = -np and without the -U f term. 
In other words (Z&) is the Laplace transform of (Ns(f)) with -npN conjugate to f .  
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